Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Bohari M. Yamin* and A. Sahali Mardi

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.098$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-p-Bromophenyl- N^{\prime}-(2-chlorobenzoyl)urea

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrClN}_{2} \mathrm{O}_{2}$, the bromophenyl and chlorophenyl groups lie in cis and trans positions, respectively, across the $\mathrm{C}-\mathrm{N}$ bonds with respect to the urea carbonyl O atom. In the crystal structure, the molecules form dimers via intermolecular hydrogen bonds involving the amino H atom that is closest to the carbonyl O atom of the benzoyl group and the urea carbonyl O atom.

Comment

It is known that conversion of thiocarbonyls to their carbonyl analogues can be carried out with the help of reagents such as sodium peroxide (Kalm, 1961), dimethyl selenoxide (Mikolajczyk \& Luczak, 1978), dimethyl sulfoxide/iodine (Mikolajczyk \& Luczak, 1975) and bismuth nitrate (Mohammadpoor-Baltrok et al., 2003). In the course of our work to synthesize a series of chlorobenzoylthiourea derivatives, including p-bromophenylchlorobenzoylthiourea, the title compound, (I), was obtained instead.

(I)

The bond lengths and angles in (I) are in the normal ranges (Allen et al., 1987) and in agreement with most urea and thiourea derivatives (Stoyanova \& Peyerimhoff, 2002; Yamin \& Yusof, 2003). The bromophenyl and chlorobenzoyl groups lie cis and trans, respectively, to atom O 2 across the urea $\mathrm{C}-\mathrm{N}$ bonds. Both aryl rings, $\mathrm{Cl} 1 / \mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{Br} 1 / \mathrm{C} 9-\mathrm{C} 14$, are essentially planar, with atoms Br 1 and Cl 1 deviating by 0.046 (1) and 0.020 (1) \AA, respectively, from their mean planes, and an angle between the planes of $57.12(10)^{\circ}$. The central carbonyl-urea carbonyl fragment (atoms O1/O2/N1/ $\mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 8$) is also planar, with a maximum deviation of $0.039(2)^{\circ}$ for atom C7. The bromophenyl and chlorophenyl planes are inclined to the central carbonyl-urea plane by 7.65 (11) and $55.12(10)^{\circ}$, respectively. There are two intramolecular interactions $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2$, forming the two pseduo-six-membered rings $\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-$ $\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 A$ and $\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 14-\mathrm{H} 14$, respectively. In the crystal structure, the molecules are arranged as dimers by intermolecular hydrogen bonding, $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$ (symmetry code as in Table 2), almost perpendicular to the $a c$ plane, stacking in the a direction (Fig. 2).

Received 6 February 2003
Accepted 25 February 2003
Online 7 March 2003

Figure 1
The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.

Experimental

A solution of 4-bromoaniline ($1.411 \mathrm{~g}, 8.2 \mathrm{mmol}$) was added dropwise to 50 ml of ethanol containing an equimolar amount of 2-chlorobenzoyl chloride and ammonium thiocynate in a two-neck roundbottomed flask. The solution was refluxed for $c a 1 \mathrm{~h}$ and then cooled in ice. The orange precipitate was filtered off and washed with methanol-distilled water, then dried at room temperature. Recrystallization from DMSO yielded single crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrClN}_{2} \mathrm{O}_{2}$
$M_{r}=353.60$
Monoclinic, $P 2_{d} / n$
$a=7.6761(7) \AA$
$b=17.7520(17) \AA$
$c=10.3654(10) \AA$
$\beta=105.479(2)^{\circ}$
$V=1361.2(2) \AA^{3}$
$Z=4$
$D_{x}=1.725 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2647
\quad reflections
$\theta=2.3-27.5^{\circ}$
$\mu=3.22 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.38 \times 0.21 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.374, T_{\text {max }}=0.627$
9216 measured reflections

> 3130 independent reflections
> 2322 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.022$
> $\theta_{\max }=27.5^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-23 \rightarrow 22$
> $l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.098$
$S=1.02$
3130 reflections
181 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 12$	$1.900(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.361(3)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.733(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.402(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.213(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.338(3)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.215(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.406(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$128.58(19)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1$	$119.13(19)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$127.73(19)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$115.48(19)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$123.9(2)$		

Figure 2
Packing diagram of the title compound, viewed down the c axis. The dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.98	$2.833(3)$	171
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.97	$2.667(2)$	137
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 2$	0.93	2.27	$2.873(3)$	122
Symmetry code: $(\mathrm{i})-x,-y, 1-z$				

After confirming their presence in difference Fourier maps, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan, Malaysia, for research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Kalm, M. J. (1961). J. Org. Chem. 26, 2925-2929.
Mikolajczyk, M. \& Luczak, J. (1975). Synthesis, pp. 114-115.
Mikolajczyk, M. \& Luczak, J. (1978). J. Org. Chem. 43, 2132-2138.
Mohammadpoor-Baltrok, I., Khodaei, M. M. \& Nikoofar, K. (2003). Tetrahedron Lett. 44, 591-594.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoyanova, A. E. \& Peyerimhoff, S. D. (2002). Electrochim. Acta, 47, 13651371.

Yamin, B. M. \& Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.

